

Near Miss? Implications of the Florida Water Utility Cyberattack

GOALS

- 1. Update on Oldsmar Water Treatment Plant Cyber Incident
 - What do we know about the incident?
 - 2. What are common mitigations that would have helped?
- 2. What are the common challenges for utilities to combat cyber threats?
- 3. Review Common Mitigations and Best Practices

Presenters

David Brearley, GICSP, PMP

Operational Technology
Cybersecurity Director

David.Brearley@hdrinc.com

Jim Schultz, P.E., CISSP, GICSP, CCNA, C|EH Cybersecurity Network Engineer James.Schultz@hdrinc.com

AGENDA

- 01 Oldsmar WTP Cyber Attack
- **02** Common Challenges
- 03 Cybersecurity Mitigations
- 04 Q&A/FAQs

Oldsmar WTP Cyber Attack (2021-02-08)

Successful Attacks

Oldsmar WTP Incident (Feb 8, 2021)

Who?

- Attacker outside source unknown
- Owner: Oldsmar, FL WTP

What?

- Access via remote monitoring and control application
- Adversary changed chemical setpoints
- Accessed systems at least <u>twice</u>

On Tuesday, February 2, the largest compilation of breached usernames and passwords, known as COMB, was leaked online. COMB contains 3.2 billion unique email/password pairs. As we recently discovered, this includes the credentials for the Oldsmar water plant in Florida.

```
💲 fgrep -r "@ci.oldsmar.fl.us"
              🖥 🚽 @ci.oldsmar.fl.u
                @ci.oldsmar.fl.us:
           @ci.oldsmar.fl.us:
                @ci.oldsmar.fl.us:
               ■ @ci.oldsmar.fl.us:
                @ci.oldsmar.fl.us:__
                  @ci.oldsmar.fl.us:=
           @ci.oldsmar.fl.us:
            @ci.oldsmar.fl.us:
              @ci.oldsmar.fl.us:
             @ci.oldsmar.fl.us:
              @ci.oldsmar.fl.us:
data/p/r: @ci.oldsmar.fl.us:
```

Three days after COMB was leaked, an unknown attacker entered Oldsmar's computer systems and attempted to poison the water supply by increasing lye levels 100 times.

Source: https://cybernews.com/news/oldsmar-florida-water-facility-credentials-contained-in-comb-data-leak/

The biggest problem is that most people don't think there is a problem

Oldsmar WTP Incident (Feb 8, 2021)

How?

- Created Remote Desktop Session using TeamViewer
- No setpoint validation in PLC or HMI
- Obsolete operating systems, no firewall, direct internet connection
- Poor credential (user/password) management
- Roles, Responsibilities, Procedures and Communications issues

Indicators?

- Mouse movement on screen
- Setpoint modification caught only be operator rounds (due to significant setpoint modification)
- Attacker logged in twice in one day
- More to come as investigation continues...

It could have been much, much worse... why did attacker show their hand so quickly?

Common Challenges

You have to be right 100% of the time, the cyber criminals only have to be right once!

Common Challenges

- Recognition of Cyber as a potential risk (undefined risk tolerance)
- Lacking System Maintenance
- Controls Staff
 - Lacking cybersecurity skillset
 - Inadequate number of staff to both maintain and monitor for threats
 - No controls or IT staff for support
- Inaccurate, Incomplete or Missing Documentation

Cost of Cybersecurity Mitigations

- Investments in technologies, staff and time
- Use of technologies for mitigation require commitment to maintain and monitor

Mitigation

VS

Cost

- Network Monitoring
- Network Segmentation
- Backup Testing and Disaster Recover Plans

- Significant investment in monitoring solution and staff time to monitor
- Additional networking equipment and more advanced skillset to maintain
- Lower investment in solution and staffing.
 Reactive response rather than lowering the likelihood or breadth of impact.

Balanced investment for risk tolerance and maintainability

Cybersecurity Mitigations

Context of Remaining Slides

- Focus on remote access only
- High level overview ~ 15 minutes, too much to cover in detail
- Best Practices per Oldsmar advisories (CISA, WaterISAC, etc.)
- Remote access concepts, nothing specific to TeamViewer
- Management level presentation have your technical staff read/follow references at the end
- If slides look familiar . . . HDR presented "Most Common Cyber Recommendations - Guiding Principles" at AEA Fall Conference with much of this material . . . please review for a broader perspective

Defense In Depth

- Multiple layers of protection . . . in case one fails
- Includes abstract concepts
 - Policies, response, training, etc.
- What are the crown jewels?
 - The Historian server? Or the data?
 - The physical PLC? Or the programming?
 - The HMI server? Or the configuration?

How much would it cost to start over from scratch with OT?

PEOPLE, Processes & Technologies

- Establish risk management leadership team
- Establish or adopt a risk management framework
- Commitment to follow best practices and industry standards
 - NIST 800-53 (IT Systems)
 - NIST 800-82 (OT Systems)
 - ISA/IEC-62443 (OT Systems)
- Training staff on role-specific cybersecurity
- Establish roles and responsibilities
- Incident response, tabletop simulations, and "manual operation" days

People, PROCESSES & Technologies

- Develop cybersecurity policies
 - Set expectations of staff
 - IT and OT systems
 - Include special risk systems SIS, communications, etc.
 - Many others see NIST SP800-53
- Procedures for system interaction

- Incident response plans and disaster recovery plans for cyber attacks
- Risk assessments at frequency defined by policy
 - Asset Inventory hardware, software, firmware you can't protect what you do not know
 - External Connection Inventory internet, business network, remote sites, etc.
 - Physical (Layer 2) & Logical Drawings (Layer 3)

People, PROCESSES & Technologies

- Password Policy
 - No shared accounts
 - Strong and unique passwords change often
 - Never store when prompted
- Remote Access Policy
 - Who can access PCS/SCADA?
 - For what purpose and for how long?
 - What security measures are required?
 - Encryption, authentication, authorization, accounting, etc.
 - Who will enable/disable connection?
 - How long before connection times out?
 - Use VPN for encryption, authentication, authorization, and accounting (AAA)

- Access Control Policy
 - Strong multifactor authentication (MFA)
 - Monitor & suspend accounts if suspicious activity
 - Account review former employees, etc.
 - Authorization creep multiple job changes
- Audit Policy
 - Confirm endpoint policy compliance
 - Review logs
 - Remote access protocols, suspicious activity
- Subscribe To Notification Services
 - Security alerts, patching

Policies establish organization expectations

People, Processes & TECHNOLOGIES

- Defense-in-Depth network architecture
- Like ISA/IEC 62443 Purdue Model Internationally Recognized Standard for connecting IT and OT networks
- Zones (networks) & Conduits (router/firewall) - segmentation
 - Use conduits to minimize traffic between zones!
 - Properly configured firewalls with spam filters, IDS/IPS, VPN, and logging are essential
- Independent cyber-physical systems

People, Processes & TECHNOLOGIES

- Segment networks isolate EoS/EoL
- Minimize conduit traffic only authorized data flows
- Intrusion Detection/Prevention Systems
- Logging connections, remote access protocols, etc.
- Encryption (external data in transit, data at rest)
- Actively supported operating systems
- Patching (HW, SW, firmware) w/ testbed
- Robust backup strategy w/ testbed
- Anti-Malware w/ updates
- Role-based authorization (least privilege)
- Endpoint hardening (least functionality)

OT~

- 2021-03-02 JRIC TLP:GREEN Compromise of US Water Treatment Facility Highlights
 Vulnerability of Critical Infrastructure to Cyber Attacks (pdf) 1 page
- 2021-02-16 WaterISAC Even the Basics are Critical for Critical Infrastructure (web) 4
 pages
- 2021-02-11 CISA TLP:WHITE AA21-042A Joint Cybersecurity Advisory Compromise of U.S. Drinking Treatment Facility (pdf) 4 pages
- 2021-02-09 WaterISAC (U//FOUO) Joint Situational Report on Recent Water Sector Cybersecurity Incident (web) – 4 pages
- 2021-02-08 WaterISAC Malicious Actor Compromises U.S. Water Treatment Plant, Changes Chemical Level (web) – 3 pages

Additional Reading – Basics

- 2020-07-23 CISA NSA and CISA Recommend Immediate Actions to Reduce Exposure Across Operational Technologies and Control Systems (pdf) – 5 pages
- 2019-09-04 AWWA Water Sector Cybersecurity Risk Management Guidance (pdf) 58 pages
- 2019-06-04 WaterISAC 15 Cybersecurity Fundamentals for W/WW Utilities (pdf) 56 pages
- 2017-08-21 EPA Incident Action Checklist with 2021-02 update (pdf) 6 pages
- 2016-11-14 EPA Cybersecurity Guide For States (pdf) 4 pages
- 2016-09-22 DHS & ICS-CERT Improving ICS Cybersecurity with Defense-in-Depth Strategies (2016) – 58 pages

You have to be right 100% of the time, the cyber criminals only have to be right once!

Q&A/FAQs

Questions?

David Brearley, GICSP, PMPOperational Technology Cybersecurity Director David.Brearley@hdrinc.com | (704) 338-6853

Jim Schultz, P.E., CISSP, GICSP, CCNA, C|EH
Cybersecurity Network Engineer
James.Schultz@hdrinc.com | (215) 845-6714

Additional Information:

- Water ISAC
- AWWA Cybersecurity Guidance
- CISA
- ICS-CERT
- ISA-62443
- NIST 800-82
- NIST 800-53